Neural Encoding II: Reverse Correlation and Visual Receptive Fields
ثبت نشده
چکیده
The spike-triggered average stimulus introduced in chapter 1 is a standard way of characterizing the selectivity of a neuron. In this chapter, we show how spike-triggered averages and reverse-correlation techniques can be used to construct estimates of firing rates evoked by arbitrary time-dependent stimuli. Firing rates calculated directly from reversecorrelation functions provide only a linear estimate of the response of a neuron, but we also present in this chapter various methods for including nonlinear effects such as firing thresholds.
منابع مشابه
Neural Encoding II: Reverse Correlation and Visual Receptive Fields
The spike-triggered average stimulus introduced in chapter 1 is a standard way of characterizing the selectivity of a neuron. In this chapter, we show how spike-triggered averages and reverse-correlation techniques can be used to construct estimates of firing rates evoked by arbitrary time-dependent stimuli. Firing rates calculated directly from reversecorrelation functions provide only a linea...
متن کاملNeural Encoding II: Reverse Correlation and Visual Receptive Fields
The spike-triggered average stimulus introduced in chapter 1 is a standard way of characterizing the selectivity of a neuron. In this chapter, we show how spike-triggered averages and reverse-correlation techniques can be used to construct estimates of firing rates evoked by arbitrary time-dependent stimuli. Firing rates calculated directly from reversecorrelation functions provide only a linea...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملWhat Are the Invariant Occlusive Components of Image Patches? A Probabilistic Generative Approach
We study optimal image encoding based on a generative approach with non-linear feature combinations and explicit position encoding. By far most approaches to unsupervised learning of visual features, such as sparse coding or ICA, account for translations by representing the same features at different positions. Some earlier models used a separate encoding of features and their positions to faci...
متن کاملAre V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007